Coincidence of Lyapunov exponents for random walks in weak random potentials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coincidence of Lyapunov Exponents for Random Walks in Weak Random Potentials

We investigate the free energy of nearest-neighbor random walks on Z d , endowed with a drift along the first axis and evolving in a nonnegative random potential given by i.i.d. random variables. Our main result concerns the ballistic regime in dimensions d ≥ 4, at which we show that quenched and annealed Lyapunov exponents are equal as soon as the strength of the potential is small enough.

متن کامل

On the Continuity of Lyapunov Exponents of Random Walks in Random Potentials

Let Sn, n ∈ N be the simple random walk on Z, d ≥ 3. We denote by Px and Ex the probability measure and the expectation, respectively, of the random walk starting from position x. Independently of the random walk, we give ourselves a family of non-negative random variables V (x, ω), x ∈ Z that we call the potentials. We suppose that the potentials are independent and identically distributed, wi...

متن کامل

Asymptotic Lyapunov Exponents for Large Random Matrices

Suppose that A1, . . . , AN are independent random matrices whose atoms are iid copies of a random variable ξ of mean zero and variance one. It is known from the works of Newman et. al. in the late 80s that when ξ is gaussian then N−1 log ‖AN . . . A1‖ converges to a non-random limit. We extend this result to more general matrices with explicit rate of convergence. Our method relies on a simple...

متن کامل

Further scaling exponents of random walks in random sceneries

Completing previous results, we construct, for every 1/2 6 s 6 1, explicit examples of nearest neighbour random walks on the nonnegative integer line such that s is the scaling exponent of the associated random walk in random scenery for square integrable i.i.d. sceneries. We use coupling techniques to compare the distributions of the local times of such random walks.

متن کامل

Lyapunov Exponents in Random Boolean Networks

A new order parameter approximation to Random Boolean Networks (RBN) is introduced, based on the concept of Boolean derivative. A statistical argument involving an annealed approximation is used, allowing to measure the order parameter in terms of the statistical properties of a random matrix. Using the same formalism, a Lyapunov exponent is calculated, allowing to provide the onset of damage s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2008

ISSN: 0091-1798

DOI: 10.1214/00-aop368